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Abstract

This paper is the second part of a two-part series presenting the results
from an experimental demonstration of frequency regulation in a commercial
building test facility. In Part I, we developed relevant building models and
designed a hierarchical controller for reserve scheduling, building climate
control and frequency regulation.

In Part II, we introduce the communication architecture and experiment
settings, and present extensive experimental results under frequency regula-
tion. More specifically, we compute the day-ahead reserve capacity of the test
facility under different assumptions and conditions. Furthermore, we demon-
strate the ability of model predictive control to satisfy comfort constraints
under frequency regulation, and show that fan speed control can track the
fast-moving RegD signal of the Pennsylvania, Jersey, and Maryland Power
Market (PJM) very accurately. In addition, we report the observed effects
of frequency regulation on building control and provide suggestions for real-
world implementation projects. Our results show that hierarchical control is
appropriate for frequency regulation from commercial buildings.
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Acronyms

AHU Air Handling Unit

AS Ancillary Service

CWS Central Working Station

HVAC Heating, Ventilation and Air-Conditioning

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

MPC Model Predictive Control

PI Proportional-Integral

PJM Pennsylvania, Jersey, and Maryland Power Market

RMSE Root Mean Squared Error

SAT Supply Air Temperature

1 Introduction

In Part I of this two-part paper, we performed a detailed literature review on the-
oretical, simulation-based, and experimental work on frequency regulation with
commercial buildings. Furthermore, we presented the test facility for our experi-
ment (FLEXLAB), developed relevant building models, and designed a hierarchi-
cal controller for reserve scheduling (level 1), building climate Model Predictive
Control (MPC) (level 2) and frequency regulation (level 3).

In Section 2 of Part II, we summarize the control and communication architec-
ture, as well as the experiment settings. In Sections 3, 4, and 5 we report extensive
experimental results in FLEXLAB for each level of control over a period of one
week. We summarize some important findings and suggestions for future work in
Section 6, whereas Section 7 concludes.

2 Preparation of the Experiment

2.1 Communication Architecture

We implement the reserve scheduling problem of level 1 (solved once a day) and
the MPC of level 2 (solved every 15 minutes) in Matlab, whereas we calculate the
fan speed setpoints of level 3 in Python (every 4 seconds) and communicate them
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Figure 1: The developed control and communication architecture for building cli-
mate control and frequency regulation in the FLEXLAB test facility.

to the Central Working Station (CWS) of FLEXLAB. We used a file-based com-
munication between Python and Matlab based on comma-separated-values (csv)
files.

The reserve scheduler stores the computed reserve capacity in the reserve.csv
file. A Python script periodically queries the CWS and stores the building mea-
surements in the measure.csv file. Another Python script periodically queries the
publicly available database of forecast.io and stores the weather forecasts in the
forecast.csv file.1 The MPC’s feedback from the building is obtained from mea-
sure.csv and the weather forecasts from forecast.csv. The optimal air flow rate
setpoint calculated by Matlab is stored in the setpoint.csv file. The fan speed set-
point is determined in Python by accessing the setpoint.csv and reserve.csv files,
and based on the frequency regulation signal.

Most of the experiment was performed using archived data of the RegD signal
from the Pennsylvania, Jersey, and Maryland Power Market (PJM) from December
2012 to January 2013. Although the signal was available with a resolution of 2 sec-
onds, we down-sampled it to 4 seconds due to the expected communication delays.
In addition, a connection with PJM was established based on the DNP3 protocol
and using a Siemens Jetstream gateway that provided us with the RegD signal in
real-time. At the FLEXLAB side, the received data were translated, saved in an
SQL database, and pushed by a “RegD signal server” to a “RegD signal client”.
The complete communication architecture from PJM to FLEXLAB is graphically
shown in Fig. 1. However, network issues at FLEXLAB made the connection un-
reliable, and therefore we chose to run the live connection with PJM only for one
continuous hour.

2.2 Experiment Settings

Since FLEXLAB is not occupied, we emulated the internal heat gains from occu-
pants and equipment using electric heaters as plug loads. The total internal heat

1Only ambient temperature forecasts are obtained from forecast.io. The solar radiation forecasts
are obtained from a clear-sky radiation model, which turned out to be sufficient for the weather
conditions during the experiment.
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Figure 2: The heater schedule and the actual power consumption. The heat gain is
high during working hours and low during non-working hours.
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Figure 3: The SAT setpoint and actual values during one week.

gain in both cells was kept lower than the chiller cooling capacity. The heaters’
consumption profile was fixed according to the red curve of Fig. 2 using digital
timer sockets. The actual heater power (blue curve) fluctuates around the profile
due to voltage variations.

Before the start of the experiment, we fixed the manually controlled inlet dampers
in the rooms to fully open positions. In addition, we fixed the return air damper
to a 100% opening and the outside air damper to a 0% opening, i.e., the return air
was fully recirculated. The speeds of primary and secondary chilled water pumps
were fixed to 75% and 100% of their rated speeds, respectively. Moreover, we de-
activated the existing floor heating system and the heating coil at the Air Handling
Unit (AHU).

We set the temperature comfort zone to 21 − 25◦C during working hours. An
existing Proportional-Integral (PI) controller regulates the Supply Air Tempera-
ture (SAT) to 17◦C by controlling the position of a cooling valve. The gains of
this controller had been tuned for a conventional building operation; therefore,
we modified them to achieve a tighter control and reduce the fluctuations of SAT
around its setpoint during frequency regulation. The resulting SAT profile during
the experiment is shown in Fig. 3. The mean deviation from the SAT setpoint is
0.05◦C (there is a small bias to larger SAT values) and the mean absolute deviation
is 0.37◦C.

Recall that the facility has two building cells with identical construction: cell
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Figure 4: The hourly reserve capacities as a percentage of the nominal fan power
for 20 November 2015 (left) and 21 November 2015 (right).

1A is used for the frequency regulation experiment, whereas cell 1B serves as
a benchmark. Applying the same air flow rate in both cells and recording the
temperature, we verified that the two cells are thermally very similar. However, we
observed that that the same fan speed setpoint induces a slightly different air flow
rate in the two cells due to small differences in the AHUs. To compensate for this,
we fitted different fan models for the two cells (the parameters for cell 1A are given
in [1, Table IV]).

The electricity cost was assumed equal to ck = 0.18 e/kWh, whereas the re-
serve capacity payment was fixed to a 10% higher value, i.e., λk = 0.198 e/kWh.
The goal of this experiment is to demonstrate the technical feasibility of reserve
provision from commercial buildings; therefore, we chose a relatively high capac-
ity payment to incentivize reserve provision.

2.3 Experiment Plan

The experiment was organized into two parts. The first part took place from 15 to
18 November 2015 and relied on an “older” building model identified with data
from June-July 2015 (see [1, Table II]). On 19 November the experiment was
paused and a new building model was identified using the recently collected data
(see [1, Table III]), which was used in the second part of the experiment from 20
to 21 November.

3 Reserve Scheduling (Level 1)

In this section, we present results relevant to the reserve scheduler. Two main
factors that determine the amount of reserves are the building’s energy capacity
and the symmetry of reserve capacity. Apart from the physical properties of the
building, the energy capacity depends also on the comfort zone’s width. In this
experiment, we specifically address the effect of enlarging the comfort zone during
unoccupied hours to 12 − 35◦C (the so-called night setback). We performed six
full-day experiments with symmetric (equal up- and down-reserves) or asymmetric
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Figure 5: The hourly reserve capacities as a percentage of the nominal fan power
for 15 November 2015 (left) and 17 November 2015 (right).

reserves, and with or without night setback. Note that the same price is assumed
for up- and down-reserves in the asymmetric case.

Fig. 4 shows the results for 20 November when symmetric reserve capacities
were assumed and for 21 November when asymmetric capacities were used (in
both days night setback was applied). The capacities are reported in % of the fan
rated power (2500 W). The reserve capacity is maximized at night when the com-
fort zone is enlarged, and during the hottest part of daytime. In case of symmetric
reserves, the maximum capacity is slightly less than 40% of the rated fan power. In
case of asymmetric reserves, the maximum up-reserve capacity is approximately
15%, whereas the down-reserve capacity is more than 60%. These experimental re-
sults are in agreement with relevant simulation results in [2,3], and show that down-
reserves (consumption increase) are preferable for commercial buildings equipped
with energy-efficient controllers, because down-reserves can be provided without
increasing the baseline consumption and the energy cost.

Fig. 5 compares the experimental results of 15 November when setback was
used with those of 17 November when no setback was applied (the reserve capaci-
ties were symmetric in both dates). With setback most reserve is provided at night,
whereas without setback the reserve provision coincides with the highest cooling
load in the middle of the day. Although the experiment was conducted with setback
and symmetric reserves both on 15 and 20 November, the capacity profiles during
daytime are considerably different due to different weather conditions and building
models.

To have a fair comparison under the same external conditions, we simulated
the reserve capacity scheduling for all combinations of symmetry and setback us-
ing the building model. The simulation and experimental results are shown in
Table 1. The capacity ranges from low values below 1% to high values nearly
50%, and it heavily depends on reserve symmetry, setback, and weather condi-
tions. The night setback increases the capacity by 177.0% on average for sym-
metric reserves, by 107.0% for asymmetric up-reserves, and by 150.7% for asym-
metric down-reserves. If setback is already used, adopting asymmetric capacities
instead of symmetric capacities reduces the up-reserves by 55.6% but increases the
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Table 1: Experimental (bold) and simulated (normal font) daily average reserve
capacities in % of fan nominal power (2500 W).

Date
Symmetric,

Setback
Asymmetric,

Setback
Symmetric,
No setback

Asymmetric,
No setback

Ru Rd Ru Rd Ru Rd Ru Rd

15/11 15.61 15.61 6.45 26.15 1.91 1.91 1.64 4.42

16/11 9.09 9.09 3.90 14.88 0.74 0.74 0.90 1.85

17/11 11.44 11.44 5.39 21.21 2.24 2.24 1.85 4.59

18/11 16.70 16.70 7.78 31.75 3.94 3.94 3.28 9.91

20/11 28.95 28.95 11.89 49.66 15.07 15.07 7.82 28.81

21/11 22.10 22.10 10.72 46.55 13.60 13.60 6.79 26.30

down-reserves by 83.1%, and so the net effect is an increase of 13.7% in the total
capacity.

4 Room Climate Control (Level 2)

4.1 Comfort Satisfaction

Experimental results for 17 November are shown in Fig. 6, where the top plot
shows the temperature trajectories in cells 1A and 1B, the middle plot presents the
forecasts and actual values for ambient temperature and solar irradiance2, whereas
the bottom plot shows the SAT and the air flow rate in cell 1A. The comfort zone
is indicated with red: the actual upper limit (red solid line) is 25◦C, but a tighter
limit of 24◦C (red dashed line) is used within the MPC to account for modeling
and prediction errors. Similar results for 18, 20, and 21 November are shown in
Figs. 7, 8, and 10, but without including the SAT and air flow rate plot due to space
limitations.

In Figs. 6 and 7 the cell 1B is under energy efficient operation and the temper-
ature remains close to the upper limit of the comfort zone. On the other hand, in
Figs. 8 and 10 the cell 1B is in a “regulation-ready” operation mode, namely the
consumption of the Heating, Ventilation and Air-Conditioning (HVAC) system is
scheduled identically to cell 1A to allow reserve provision, but no regulation signal
is received. For this reason, the temperature trajectories of the two cells are very
close to each other for most of 20 and 21 November.3

2The total global irradiance is shown, which includes the long-wave radiation losses from the
building envelope to the atmosphere, and it can be negative at night. This effect is known as nighttime
radiation cooling [4].

3The discrepancies from 12.00 to 19.00 on 20 November are due to the calibration differences
between the fan models of the two cells (see Section 2.2). The discrepancies from 07.00 to 17.00
on 21 November are because of interruptions in the hierarchical control in cell 1B due to server
connection timeout error from approximately 07.00 to 11.00. When the server was unresponsive,
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Figure 6: Experimental results for the room climate controller under frequency
regulation on 17 November (symmetric reserves, without night setback).

The temperature trajectory of cell 1B in Figs. 6 and 7 remains mostly in the
band [24 − 25]◦C, which illustrates the necessity of tightening the comfort zone
constraints in the MPC to compensate for modeling errors. The temperature trajec-
tory of cell 1A is more variable and it follows the scheduled reserve and air flow
rate. On 17 November (Fig. 6) frequency regulation is provided while respecting
the comfort zone.

However, on 18 November (Fig. 7) the comfort zone is violated from 13.00
to 16.00 in cell 1A, but not in cell 1B. This happens because: (i) the ambient
temperature is higher than the day-ahead forecast from the beginning of the day
until 15.00, and (ii) asymmetric reserves are used. The asymmetry allows for a
more aggressive scheduling with a larger down-reserve capacity on 18 November
in comparison with 17 November when symmetric reserves are used (see Table 1).

The control performance is significantly better on 20 and 21 November (Figs. 8
and 10) despite the large discrepancies between the day-ahead ambient temperature
forecasts and the actual values. The improvement is due to the recently calibrated

the cell was controlled by an existing fallback controller.
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Figure 7: Experimental results for the room climate controller under frequency
regulation on 18 November (asymmetric reserves, without night setback).

building model (see Section 2.3). No comfort zone violations occur and more-
over the temperature is below the MPC constraint of 24◦C for most of the time.
Therefore, periodic model calibration (for example on a weekly or daily basis) is
important to account for seasonality and eliminate systematic errors.

These results show that if the model and weather predictions are sufficiently
accurate, the robust reserve scheduler allows a commercial building to bid in day-
ahead markets for frequency regulation. On the other hand, if the modeling and
prediction errors exceed the controller’s robustness margin, reserve provision for
frequency regulation might have an adverse effect on occupant comfort.

The temperature trajectory in Figs. 8 and 10 is typical for a building with a
night setback. The controller chooses to overcool the space at night in order to
generate higher revenue by offering a larger reserve capacity. In contrast, the re-
serve capacity is smaller during working hours and the room temperature is higher.
A comparison of the temperature trajectories in cells 1A and 1B shows that track-
ing the RegD signal has little effect on room temperature due to the signal’s limited
energy content.

4.2 Model and Estimator Performance

Fig. 9 compares the out-of-sample performance of the older model (left plot) and
the new model (right plot). The blue curve is the measured room temperature,
the green curve is the estimated temperature with the Kalman filter, the red curve
corresponds to a day-ahead model prediction, whereas the orange curve shows the
step-ahead temperature predictions. Clearly, the new model outperforms the older

9



03:00:00 06:00:00 09:00:00 12:00:00 15:00:00 18:00:00 21:00:00 00:00:00
19

20

21

22

23

24

25
R

oo
m

 te
m

pe
ra

tu
re

 (C
)

Cell 1A
Cell 1B
Comfort zone
MPC bounds

00:00:00 03:00:00 06:00:00 09:00:00 12:00:00 15:00:00 18:00:00 21:00:00
8

10

12

14

16

18

20

22

24

A
m

bi
en

t t
em

pe
ra

tu
re

 (C
) Actual temperature

Forecasted temperature

200

100

0

100

200

300

400

500

600

So
la

r i
rr

ad
ia

nc
e 

(W
/m

2 
)Actual irradiance

Forecasted irradiance

03:00:00 06:00:00 09:00:00 12:00:00 15:00:00 18:00:00 21:00:00 00:00:00
Time

0

500

1000

1500

2000

2500

3000

A
ir 

flo
w

 ra
te

 (c
fm

)

Air flow rate

15.5
16.0
16.5
17.0
17.5
18.0
18.5
19.0
19.5
20.0

Su
pp

ly
 a

ir 
te

m
pe

ra
tu

re
 (C

)Supply air temperatureCell 1A

Time

Figure 8: Experimental results for the room climate controller under frequency
regulation on 20 November (symmetric reserves, with night setback).
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Figure 9: Model and Kalman filter performance. Left: Results for 17 November
with the older model. Right: Results for 20 November with the new model.

one, especially for the day-ahead predictions. This is why the performance of the
level 2 controller is much better on 20 November than on 17 November in terms of
comfort zone violations.

The effect of model accuracy on MPC operation is shown in Fig. 11. On 17
November the model mismatch is large, which results in a significant discrepancy
in the scheduled air flow rate and fan power between levels 1 and 2. The MPC
reacts on the modeling error by reducing the cooling power in level 2 during night
hours and increasing it during daytime. In this way, the MPC provides the same
amount of electric reserve in daytime with less change in air flow rate by taking
advantage of the nonlinear fan curve. On the other hand, the model mismatch is
small on 20 November and so the air flow and fan power schedules of level 1 and
level 2 are similar. In fact, level 2 consistently schedules less cooling power than
level 1 because the air flow constraints are relaxed [1, Equations 15, 24], and the
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Figure 10: Experimental results for the room climate controller under frequency
regulation on 21 November (asymmetric reserves, with night setback).
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Figure 11: Left: Air flow rate schedule in level 1 and level 2. Right: Fan power
schedule in level 1 and level 2.

reserve scheduling in level 1 is robust and thus conservative.

4.3 Fan Heat Gain at High Speeds

We present results on the dependence of SAT and cooling valve opening on fan
speed in Fig. 12, where the blue points are measurements and the red trend is a
polynomial fit on them. As expected, the trend in cooling valve opening is increas-
ing because the higher the fan speed the more cooling is required from the chilled
water loop. The trend in SAT is a flat line for fan speeds up to 50%. However,
for speeds above 50% (and especially above 70%) there is a clear increasing SAT
trend despite the increased cooling valve opening.

These results lead to an interesting observation: the heat gain due to the rotation
of the fan is significant at high speeds and it cannot be effectively rejected by ex-
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Figure 12: The dependence of SAT and cooling valve opening on fan speed.

changing heat with the chilled water loop. According to Fig. 12, if the fan operates
at a 70% speed or higher, the SAT will likely have a steady-state deviation from the
setpoint 17◦C that can be as high as 1◦C. Steady-state SAT deviations might result
in comfort zone violations, because the controller assumes the SAT fixed to 17◦C.
This did not create problems in our experiment because the scheduled fan speed by
the MPC was at most 70%.

4.4 Effect on Energy Consumption

A major concern when providing Ancillary Services (AS) with commercial build-
ings is the effect on energy consumption. Ref. [5] reported a round-trip efficiency
of 46% when a building responded to demand response events in an experiment.
There are two types of efficiency losses relevant to frequency regulation: “reserve
availability efficiency loss” and “reserve utilization efficiency loss” [6]. The first
one is the efficiency loss due to scheduling the consumption in an energy subopti-
mal way to be able to provide frequency reserves, if requested. The second one is
the additional efficiency loss while tracking the frequency regulation signal.

We report efficiency results in Table 2 for: (i) 15-18 November when the cell
1B was under energy efficient operation (to quantify the reserve availability effi-
ciency loss); and (ii) 20 November when cell 1B was in regulation-ready operation
mode (to quantify the reserve utilization efficiency loss). The efficiency loss is cal-
culated comparing the energy consumption of cell 1A with that of the benchmark
cell 1B. We use two different definitions of energy consumption: (i) electric energy
consumption of the fan, and (ii) thermal cooling power consumption of each cell.
The latter is calculated based on the chilled water flow rate (ṁcw), as well as the
supply (Tch,s) and return (Tch,r) chilled water temperatures using

Pcool = ṁcw · (Tch,r − Tch,s) . (1)

Based on the results of Table 2, the reserve availability efficiency loss is sig-
nificant and equal to approximately 68% in terms of fan consumption and 11% in
terms of cooling power from the chiller. However, the additional consumption in
cell 1A is not entirely wasted because it results in a lower average temperature.
When cell 1B is in the regulation-ready mode, the cell 1A consumes less energy
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Table 2: Effect of frequency regulation on energy consumption
1B operation

mode
Energy efficient
15/11-18/11

Regulation-ready
20/11 (0-24 h) 20/11 (0-12 h)

Cell 1A 1B 1A 1B 1A 1B
Fan energy (kWh) 27.22 16.23 19.24 20.91 9.40 10.19

Cooling (gpm · F) 1989.92 1800.55 772.16 788.69 328.78 331.09

Mean temp. (◦C) 22.85 24.43 21.45 21.26 21.05 21.05
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Figure 13: The average MPC computation time depending on the time of the day
and on reserve symmetry.

than cell 1B despite frequency regulation. The non-negligible difference in the
average temperature of the two cells is due to the imperfections in fan model cali-
bration and the limited temperature sensor accuracy. However, even from 00.00 to
12.00 when both average cell temperatures are 21.05◦C, the consumption of cell
1A is still lower than that of cell 1B. This result indicates that the “reserve utiliza-
tion efficiency loss” is negligible while tracking a fast-moving regulation signal
like RegD.

4.5 MPC Computation Time

The MPC computation time is sufficiently low for our demonstration. As shown
in Fig. 13, the longest computation time is 150 s for symmetric reserves and 65 s
for asymmetric reserves. The computation time for asymmetric reserves is lower
because the problem is simpler and smaller [1, Section IV.D].

The computation time decreases at the end of the day because a reducing MPC
horizon is used. After the 70th time step, when the MPC prediction horizon is
smaller than 26 time steps (6.5 hours), the computation time is less than 2 s. There-
fore, Fig. 13 can be used to select the prediction horizon’s length depending on the
maximum allowable computation time. Since the computation time grows expo-
nentially with the number of variables of the nonlinear optimization problem, a
shorter prediction horizon might be necessary for larger buildings.
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5 Regulation Signal Tracking (Level 3)

5.1 Control Performance Metrics

In this section, we present results from level 3 and evaluate the tracking perfor-
mance of the regulation signal. The following metrics are used

et,k = ec,k/Pd,k, ec,k = Pd,k − Pf,k (2)

er,k =

{
ec,k/Ru,k, if wk < 0

ec,k/Rd,k, if wk ≥ 0
(3)

eme = (1/Nexp) ·
∑Nexp−1

k=0
ec,k (4)

emae = (1/Nexp) ·
∑Nexp−1

k=0
|ec,k| (5)

ermse =

√
(1/Nexp) ·

∑Nexp−1

k=0
e2c,k (6)

et,mape = (1/Nexp) ·
∑Nexp−1

k=0
|et,k| (7)

er,mape = (1/Nexp) ·
∑Nexp−1

k=0
|er,k| , (8)

where Pf,k denotes the instantaneous fan power, wk denotes the normalized regula-
tion signal, and Nexp denotes the experiment duration. The metrics et,k and er,k are
relative instantaneous errors but the normalization is performed using the desired
fan power Pd,k in et,k, and the up- (Ru,k) or down-reserve capacity (Rd,k) in er,k.
The mean error eme is used to measure any biases in the control response, whereas
emae is the Mean Absolute Error (MAE) during the experiment. The Root Mean
Squared Error (RMSE) ermse penalizes more the large control errors, for example
due to overshoots and undershoots. The metric et,mape is the tracking Mean Abso-
lute Percentage Error (MAPE), and er,mape is the reserve MAPE. We use the metric
er,mape because it describes the relative size of the control error with respect to the
reserve capacity.

In addition, we use the score proposed by PJM for evaluating the performance
of frequency regulation. The total score Stot consists of three parts, namely the cor-
relation score Sc, the delay score Sd and the precision score Sp, which are defined
as [7]

Sc = max
τ∈[0,5 min]

(Rcor) (9)

Sd =
∣∣∣τ∗ − 5 min

5 min

∣∣∣, τ∗ = argmax
τ∈[0,5 min]

(Rcor) (10)

Sp = 1− (1/n) ·
∑n

k=1

∣∣∣ ec,k

P̄d,h

∣∣∣ (11)

Stot = (1/3) · Sc + (1/3) · Sd + (1/3) · Sp . (12)
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The correlation score is the maximum correlation Rcor of the desired power
Pd,k and fan power Pf,k, and τ∗ is the time shift at which the correlation is maxi-
mized (τ takes a value from 0 to 5 min with a step of 10 s). We calculate the delay
score based on the time shift with maximum correlation. In the precision score cal-
culation, we normalize the absolute control error by the average hourly value of the
reference signal P̄d,h, whereas the total score is a weighted sum of the individual
scores.

5.2 Experimental Time Series Results

In Fig. 14 we present results from the operation of level 3 controller from 18.30
to 19:30 on 20 November 2015. The duct pressure is quadratic to the fan speed,
as expected from the fan laws. Since the duct system is designed to sustain the
pressure corresponding to the maximum fan speed, and because the fan speed does
not exceed its maximum value (90%) during frequency regulation, pressure con-
straints were not necessary in the reserve scheduling and MPC formulations in our
experiment.

The RegD signal changes direction very often and has a limited energy content.
During periods of time when the RegD signal is relatively flat, or the reserve capac-
ity is low, the PI controller is active. On the other hand, whenever the changes in
fan power are rapid, the control switches to the model-based feedforward control.

The tracking of the RegD signal is generally very good. However, when large
rapid changes in fan power are requested, overshoots or undershoots might appear.
In addition, if the reserve capacities change significantly at the beginning of each
full hour, temporarily large errors might occur. In general, the instantaneous per-
centage errors et,k and er,k are higher at a low operating fan power and low reserve
capacity.

5.3 Evaluation of Tracking Performance

The performance metrics (2)-(8) for the 6 days of Table 1 are presented in Table 3.
er,mape is larger than et,mape because small reserve capacities are offered for a large
part of the experiment. The mean error eme has a negative bias, which means that
the fan power is more often higher than the desired setpoint because the control
overshoots are larger than the undershoots.

We investigate the dependence of control performance on the minimum re-
serve capacity, which we call “reserve threshold” and denote by Rthr. The metrics
emae, ermse, et,mape and er,mape are recalculated considering only the time steps when
Ru,k ≥ Rthr if wk < 0, and Rd,k ≥ Rthr if wk ≥ 0. We repeat this procedure for
different Rthr values and present the results in Fig. 15.

In contrast to et,mape, er,mape decreases rapidly as Rthr increases in the range
[0, 200] W. This happens because (for the same absolute control error) er,k de-
creases if Ru,k or Rd,k increase. On the other hand, emae and ermse generally in-
crease as Rthr increases because the higher the reserve capacity the larger the fan
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Figure 14: Fan control and RegD signal tracking for a period of 1 hour.

power change, and thus the higher the errors due to the overshoots and under-
shoots. Fig. 15 can provide us with bounds on the reserve capacity from a tracking
performance point of view.

In Table 4 we report the PJM scores calculated separately for the period 15 -
18 November and the period 20 - 21 November. Different scores are calculated for
each hour (only if the reserve capacity is non-zero) [7], and the values in Table 4
are hourly averages. The frequency regulation performance is exceptional during
the whole experiment. For comparison, the highest possible total score is Stot = 1
and the minimum Stot accepted by PJM is 0.75. The scores are slightly higher
for 20 − 21 November because the building provides a larger reserve capacity
compared with 15− 18 November.
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Figure 15: Dependence of tracking and reserve errors on the reserve threshold.

Table 3: RegD tracking performance metrics during the experiment
Metric eme emae ermse et,mape er,mape

Value −5.66 W 12.45 W 27.00 W 3.58% 8.23%

5.4 Effect on Supply Air Temperature

Tracking the fast-moving RegD signal introduces high frequency oscillations on
SAT as shown in Fig. 16. The SAT of cell 1A (frequency regulation) oscillates
more than that of 1B (regulation-ready mode), especially after sudden changes in
the regulation signal that induce sudden changes in the air flow rate. In addition,
large excursions in SAT occur in both cells when the MPC changes the air flow
setpoint significantly, for example at hour 08.00. Moreover, the magnitude of SAT
oscillations is high at low air flow rates, for example from 05.00 to 08.00.

5.5 Effect of Fan Control on Chiller Power

The fan and the chiller are thermally coupled through the chilled water loop, hence,
it is worth investigating if the operation of the chiller is affected while providing
frequency regulation with the fan. In Fig. 17 we present relevant experimental
results for a duration of 10 hours. The top plot shows the instantaneous and hourly-
average electric power of the fan in cell 1A and the chiller. The bottom plot shows
the cooling power in the chilled water loop for cells 1A and 1B calculated with (1).

The chiller has two stages and the electric power consumption is relatively
constant at each stage. The chiller’s cycling depends on the cooling load, which in
turn depends on the fan power and ambient conditions. In general, as the fan power
increases the chiller cycles more often and remains longer at the on state. This is
shown in Fig. 17 where the average chiller power (green line) generally follows the
average fan power (black line).

The effect of regulation is visible on the cooling power that fluctuates more in
cell 1A compared with cell 1B (regulation-ready mode). Whenever the fan power
increases, the cooling load also increases and the SAT tends to decrease. This is
sensed by the SAT controller that opens the cooling valve to compensate for the
SAT decrease, which in turn increases the cooling power in the chilled water loop.
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Table 4: PJM scores for tracking the RegD signal
Score Sc Sd Sp Stot

15− 18 Nov. 0.89 0.97 0.96 0.94

20− 21 Nov. 0.96 0.99 0.98 0.98
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Figure 16: Air flow rate and SAT in cells 1A and 1B on 20 November.

The delay in cooling power response depends on the time constant of the cooling
valve’s controller.

Despite the oscillations in cooling power, there is no observable effect on
chiller’s cycling and electric power. This happens because: (i) the chilled water
is stored in a tank that provides some inertia; and (ii) the RegD signal is approx-
imately zero-mean. Note that the gradual reduction in the hourly-average chiller
electric power from 19.00 to 00.00 in Fig. 17 is mainly the result of a lower cool-
ing need due to ambient temperature drop, rather than a side-effect of frequency
regulation.

These results indicate that frequency regulation can be provided with fan con-
trol without side-effects on chiller consumption. However, this does not necessarily
hold for regulation signals with a larger energy content such as RegA. In addition,
chillers with continuous rather than duty-cycle control will likely display a more
observable impact on consumption while providing frequency regulation, espe-
cially if there is no chilled water storage tank. In these cases, the level 3 controller
should be revised, which is an interesting direction for future work.

5.6 Analysis of Communication Delays

A challenge in this experiment was the communication delays in measurements and
actuation, which result in the overshoots and undershoots in fan power in Fig. 14.
In Fig. 18 we present a histogram of the experienced delays during the whole exper-
iment. The probability distribution of the delay is positively skewed with a mean
value of 2.89 s and a 95%-percentile of 2.99 s. In fact, there exist a few very large
delays in excess of 5 s due to temporary unresponsiveness of the CWS, which are
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Figure 17: Effect of frequency regulation on the chiller and cooling power.
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Figure 18: Histogram of communication delays during the experiment.

not included in Fig. 18. Despite the fact that the average delay is large compared
with the time step of level 3 controller (4 s), the tracking performance of RegD
signal is very good.

6 Lessons Learned and Outlook

6.1 Lessons Learned

Hierarchical control is an efficient way to provide frequency regulation with com-
mercial buildings because time-separated tasks are considered individually. Three
control layers are essential: (i) a reserve capacity scheduler, (ii) a building climate
controller to satisfy comfort while leaving enough slack for reserves, and (iii) a
controller to track the regulation signal.

Frequency regulation accuracy: High-quality frequency regulation can be pro-
vided by fan speed control. The RegD signal tracking is excellent even with
large communication delays in the building automation system. A switched con-
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troller comprised of a feedforward controller and a PI feedback controller with gain
scheduling provides a fast response without compromising stability. This results in
a total PJM score as high as 0.98, which is well above PJM’s limit of 0.75.

Means to increase reserve capacity: In our experiment, the fan provided 0.74−
49.66% of its rated power as reserve capacity, depending on ambient conditions and
reserve assumptions. Allowing asymmetric reserve capacities and using a night
setback are effective ways to increase the reserve potential from commercial build-
ings. In fact, down-reserves are preferable for buildings because the capacity can
be offered without increasing baseline energy consumption.

Occupant comfort: If the building bids in day-ahead AS markets, respecting
occupant comfort might be challenging if the building model and weather fore-
casts are not very accurate. Furthermore, asymmetric reserves result in a more
aggressive scheduling that might increase comfort zone violations.

Building model: An accurate building thermal model is essential for comfort
satisfaction, especially in day-ahead AS markets. Periodic calibration of the build-
ing model helps to account for seasonality and eliminate offsets in modeling error.

Advantages of MPC: Perhaps the most important advantage of MPC is that
it identifies the optimal balance between reserve provision and energy efficiency.
MPC additionally provides us with a baseline consumption ahead of real-time op-
eration, which is beneficial from a practical point of view. Moreover, due to its
predictive closed-loop nature it reacts to modeling and weather prediction errors in
a way that minimizes occupant discomfort.

Robustness measures: It is important to consider the regulation signal uncer-
tainty when scheduling the reserve capacity. A conservative modeling of this un-
certainty builds robustness to weather prediction and building modeling errors. Ad-
ditional robustness can be obtained by tightening the comfort zone constraints in
the MPC, and allowing a larger fan speed control band in the MPC compared with
the reserve scheduler.

Effects of frequency regulation on building control: Frequency regulation might
introduce oscillations in SAT that can be reduced by appropriately tuning the cool-
ing valve controller. In addition, if the MPC schedules the fan speed at very high
values, the cooling loop might not be able to reject the additional heat gain due to
fan rotation. On the positive side, there is little effect on the average energy con-
sumption of the chiller while tracking an energy-constrained frequency regulation
signal by controlling the fan power. However, the impact of fan control on chiller
cycling may prevent the building from accurately following the regulation signal
when measured against a baseline that includes the combined consumption of the
fan and the chiller. This is an interesting area of further study.

Energy consumption: Provision of frequency reserves entails some efficiency
loss. The efficiency loss due to scheduling the HVAC consumption in a suboptimal
way compared with an energy efficient building control can be as high as 67%. On
the other hand, the efficiency loss while tracking frequency regulation signals with
limited energy content is negligible.
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6.2 Outlook

There are several avenues for follow-up work. Two direct extensions are to repeat
the experiment with the RegA signal of PJM, which is slower but has more energy
content, and/or with the heating loop of the AHU enabled. In addition, performing
the frequency regulation experiment using all four buildings of FLEXLAB will
leverage the full potential of hierarchical control and verify the scalability of the
approach.

In some HVAC systems a duct pressure controller regulates the pressure to
a fixed setpoint. The combined operation of this controller and the dampers of
each zone might reject the frequency regulation action [8]. This is an important
challenge that could not be addressed in this experiment at FLEXLAB as it requires
testing on a large building.

The reserve scheduling optimization problem might be computationally heavy
for buildings with many zones. An alternative is to approximate the nonlinear fan
power curve with a piecewise affine function by introducing binary variables. The
bilinear building dynamics can be approximated with sequential convex optimiza-
tion [9], but the convergence is not guaranteed. Finally, the conservatism of the
reserve scheduling problem can be reduced by generating scenarios from historical
frequency regulation signals at the cost of reducing robustness.

7 Conclusion

In Part II of this two-part paper, we reported experimental results for frequency
regulation from a commercial building test facility (FLEXLAB). The results are
very encouraging: the test building can track fast-moving signals such as RegD
reliably, with very high accuracy, and with minimal effect on occupant comfort
and the operation of the HVAC system. The results also indicate that a hierarchical
control approach is appropriate for frequency regulation with day-ahead bidding of
the reserve capacity, and it can be used in field tests and real-world implementations
in larger buildings.
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